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LElTER TO THE EDITOR 

Exact results for lattice models with pair and triplet 
interactions 

X N Wu and F Y Wu 
Department of Physics, Northeastern University, Boston, MA 021 15, USA 

Received 20 April 1989 

Abstract. We consider an lsing model and the related lattice gas on the Kagome lattice 
with two- and three-site couplings. Using a transformation which effectively decimates the 
triplet interactions, we determine the exact phase diagram of the k ing  model as well as 
the exact boundary of the two-phase region of the lattice gas. 

One unresolved problem in statistical physics has been the determination of the effects 
of multi-particle interactions on properties of a thermodynamic system. In particular, 
it has proved extremely difficult to deduce exact information. The only non-trivial 
exact solution known to this date is the solution of the triangular Ising model with 
pure three-spin interactions [ 11. Studies of systems with mixed pair and multi-site 
interactions have usually been carried out with the help of mean-field [2] and renormali- 
sation group [3] approximations. 

In this letter, we carry out an exact analysis of two lattice models with pair and 
triplet interactions for the KagomC lattice. We consider the Ising model and the related 
lattice gas with two- and three-spin interactions and show that they can be related to 
systems without the triplet interactions. Using this transformation, we determine the 
phase diagram of the Ising model and the exact boundary of the two-phase region of 
the lattice gas. 

Consider a KagomC Ising lattice of N sites shown in figure 1 with the reduced 
Hamiltonian 

- P X =  L C s i + K  ~ s s ’ + M ~ s s ’ s ”  
1 nn  A 

Figure 1. The KagomC lattice (full lines) and the associated honeycomb lattice (broken 
lines). 

0305-4470/89/211031+05$02.50 @ 1989 1OP Publishing Ltd L1031 



L1032 Letter to the Editor 

where p = l /kT, the first summation is taken over all spins si = *l, i = 1, 2, . . . , N, 
the second summation over all nearest-neighbour pairs, and the third summation over 
the three spins surrounding each triangular face of the lattice. Thus, the Boltzmann 
factor of a triangular face is 

w ( s, s’, s”) = exp[ f L( s + s ’ + s”) + K ( ss‘ + s’s” + s”s ) + Ms”~’‘] (2) 

and the partition function can be written as 

Z ( L ,  K, M )  = n w(s ,  s‘, s”). 
7 , = * l  A 

(3) 

The KagomC lattice is the covering lattice of a honeycomb lattice, a situation shown 
in figure 1. Here, every spin of the KagomC lattice resides on one edge of the honeycomb 
lattice. If we regard the spin variable s = 1 as implying that the edge on which the 
spin s resides is empty, and s = - 1  as implying that the edge is covered by a bond, 
then the partition function (3)  describes precisely an eight-vertex model on the honey- 
comb lattice [4] with the following vertex weights: 

a = w ( l ,  1 ,  l ) = e x p ( j ~ + 3 ~ + ~ )  

b = w ( 1 ,  1, -1)  = U ( ,  - 1 , 1 )  =w(-1, 1 , l )  =exp(;L-K - M )  

c = w ( , ~ - ~ , - ~ ) = w ( - ~ , ~ , - ~ ) = w ( - ~ , - ~ ,  l ) = e x p ( - f L - K + M )  

d = w ( - 1 ,  - 1 ,  -1)=exp(- jL+3K - M ) .  

(4) 

Now, the eight-vertex model on the honeycomb lattice is completely equivalent to an 
Ising model in an external magnetic field L,  and with a nearest-neighbour interaction 
KI [4,5]. The equivalent interaction KI is given by? [4,5] 

exp(4KI)= l + A / ( b d - ~ ~ + a c - b ~ ) ~  

u2[4vw4+ ( K 2  - 6  - 3 u 2 ) w 2 + 4 ~ ]  
= 1 +  

[(  u2 - u)w2+ 1 - u2u]2 

where 

A = ( a d  - bc)*-4(bd - C’)(UC - 6’) 
-2M = e-L U = e-4K w = e  . 

An explicit expression of the reduced magnetic field L ,  has been given in [SI.  
Particularly, the trajectory L,  = 0 is, upon using (4), 

O =  a ( b 3 +  d 3 )  - d ( a 3 +  c3)+3(ab+ bc+ cd)(c2- bd - b2+ U C )  

(7) 
= u 2 w 2 + 3 u 2 (  1 + u2u+ u4)[1 + u2u - (  u Z +  u)w2]+ u6( w 2 -  u 3 )  - 1. 

Thus, the Ising model ( 1 )  is transformed into one without three-spin interactions. 
For A > 0 or, equivalently, 

cosh 2M > ( 3 v 4 + 6 u 2 -  1 ) / 8 u 3  (8) 

t More precisely, exp(2K,) is given by equation (25) of [SI, where the sign on the RHS of (25) is chosen so 
as to make exp(2K,) > 0, subject to the condition (32) of [SI.  In the present case, it can be shown that the 
condition (32) of [SI is always satisfied along the critical surface (7) ,  K , >  K , ,  so we can, instead, use ( 5 )  
for exp(rlK,). 
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which is satisfied when the nearest-neighbour interaction K is ferromagnetic?, we have 
K ,  > 0 so that the equivalent king model is ferromagnetic. In this case it is known 
that the Ising free energy is singular only at L ,  = 0, the locus (7) ,  for 

(9) exp(2KI) 2 exp(2KrC) = 2 +&. 
Thus (7) in the regime (9) gives rise to a critical surface across which the Ising model 
exhibits a first-order transition and along which there is a non-zero spontaneous 
magnetisation. This critical surface is shown in figure 2. 

Conversely, the above critical surface occurs only for K > 0. To see this, we 
eliminate w between ( 5 )  and (7) to obtain 

( u2 + v)( u2u + 1) 
u(u4+2u2v+l)  

exp(2K,) = 2 2 + &  

where the last inequality follows from (9). Since u2 is positive, the inequality (10) 
then implies 

~ = e x p ( - 4 K ) S e x p ( - 4 K ~ " ~ ) = ( 3 + 2 & ) - ~ <  1 (11) 
hence K > 0. The regime (10) is the projection of the critical surface (7) onto the 
(U, v)  plane; the broken curve in figure 2. 

Figure 2. The phase diagram of the Kagomi Ising model. The shaded surface denotes a 
first-order surface L, = 0, K, > K , ,  which terminates on the critical line L ,  = 0, K ,  = K ,  (the 
full line). The critical surface contains the line segment U = 1 ,  w = 1, U < ( 3 + 2 f i ) - '  = 
0.1547, the critical line for pure pair interactions. 

t Since the RHS of (8) is less than 1 for O <  U < 1. 
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For A < O  we have Kl<O, which is possible only when K <0, and LI is pure 
imaginary [4]. In this case there exists no rigorous result on the critical behaviour of 
the equivalent Ising model. However, we have found numerical evidence that the 
correlation length does not diverge. We therefore conjecture that the free energy of 
the Ising model is actually analytic in this regime. This implies that the only singularity 
of the KagomC Ising free energy is that of the first-order surface (7) shown in figure 
2. The phase diagram in the ( T ,  L / K ,  M / K )  space is similar and is not shown. 

The preceding results also lead to the determination of exact results for a lattice 
gas with pair and triplet interactions. Again, we consider the KagomC lattice. It is 
well known that an Ising model is equivalent to a lattice gas [6], an equivalence which 
is effected by introducing 

si = 2n, - 1 (12) 
where ni = 0, 1 is the occupation number of the lattice site. The partition function (3)  
then becomes 

Z ( L ,  K, M ) = e x p [ N ( - L + 2 K - 2 M / 3 ) ] E ( z , J , J 3 )  (13)  
which is the grand partition function of the KagomC lattice gas with reduced nearest- 
neighbour interactions - J  = 4(M - K),  three-site interactions -J3 = -8M and the 
fugacity z = exp(4M - 8K + 2L). For this lattice gas the equation of state is 

1 
- In E(~,J ,J , )  

kT N 

where p is the pressure, T the temperature, and the fugacity z is to be eliminated from 
the expression of the density 

P = z ;  (6). 
Along L, = 0, namely (7), we use (13), (3), the known free energy for the zero-field 
honeycomb Ising model [7] (see also equation (131) of [8]), and (14) of [5], to specialise 
(14) as 

-:In a '- i ln 2-111 C O S ~  K /  +y jO2= d e  dc$ KT 24 IT 

(16) 
xIn{l+cosh3(2K,)-sinh2(2Kl)[cos @+cos c$+cos(@+4)} 

where a' is a function of a, b, c, d given by (10) and (20) of [ 5 ] .  Along the critical 
surface of LI = 0, K I  > K,, the expression (15) for p splits into two branches pI and 
pp,  where pI and pg are the respective densities of the liquid and gas phases, correspond- 
ing to the spontaneous magnetisation 1, being taken to be positive or negative [6]. 
Thus, (15) and (16) give rise to a parametric equation for the boundary of the two-phase 
region. We have computed this phase boundary numerically using the following explicit 
expression for Io [9]: 

16 exp( -6K,)[ 1 + exp( -6K,)] 
[ 1 - exp( -2K1)I3[ 1 - exp( -4Kl)I3 

This result is plotted in figure 3 for two values of .I3 = 0 and .I3 = 0.2 J. 
In summary, we have considered the Ising model on the KagomC lattice with two- 

and three-spin interactions, and obtained its exact phase boundary. We have also 
considered a KagomC lattice gas with pair and triplet interactions, and obtained its 
exact boundary of the two-phase region. 
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7 
Figure 3. The exact boundary of the two-phase region of the Kagom.4 lattice gas for J3 = 0 
and J3 = 0.2J. p is in units of kTJ. 
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